Non-linear Wave Equations – Week 7

Gustav Holzegel

June 3, 2021

1. Deduce the local in time Strichartz estimate from the global in time one stated in lectures, i.e. show that one can replace $L_t^q L_x^r$ by $L^q([0,T], L^r(\mathbb{R}^n))$ on the left, and $L_t^{q'} L_x^{r'}$ by $L^{q'} \left([0,T], L^{r'}(\mathbb{R}^n)\right)$ on the right of the estimate stated in class.

HINT: Cut off F in time and use domain of dependence.

2. Show that the conditions $s = \frac{n}{2} - \frac{n}{r} - \frac{1}{q}$ and $\frac{n}{r} + \frac{1}{q} = \frac{n}{r'} + \frac{1}{q'} - 2$ in the Strichartz estimate are necessary for the estimate to hold.

HINT: Use scaling.

The following problems concern the well-posedness theory of $\Box \phi = |\phi|^{p-1} \phi$ with 3 in <math>3+1 dimensions as discussed in lectures.

- 3. (Persistence of regularity.) In lectures, we proved local well-posedness for $\Box \phi = |\phi|^{p-1} \phi$ with $3 and initial data <math>f \in \dot{H}^1(\mathbb{R}^3)$, $g \in L^2(\mathbb{R}^3)$ in the space $C^0([0,T],\dot{H}^1(\mathbb{R}^3)) \cap C^1\left([0,T],L^2(\mathbb{R}^3)\right) \cap L^{\frac{2p}{p-3}}\left([0,T],L^{2p}(\mathbb{R}^3)\right)$.
 - (a) Show that if the data satisfies $f \in H^2(\mathbb{R}^3)$, $g \in H^1(\mathbb{R}^3)$, then the solution is in addition in $C^0([0,T],H^2(\mathbb{R}^3)) \cap C^1([0,T],H^1(\mathbb{R}^3))$ for as long as the solution exists. Can you show the solution is classical if the data are sufficiently smooth?
 - (b) Derive the conservation of energy for solutions in the space $C^0([0,T],H^2(\mathbb{R}^3))\cap C^1([0,T],H^1(\mathbb{R}^3))$.
 - (c) Use an approximation argument to conclude that energy conservation holds even for data in $f \in \dot{H}^1(\mathbb{R}^3), g \in L^2(\mathbb{R}^3)$.
- 4. (Continuous dependence on data.) The well-posedness result from lectures allows us to define a solution map $S: \dot{H}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3) \to X$ where $X = C^0([0,T],\dot{H}^1(\mathbb{R}^3)) \cap C^1\left([0,T],L^2(\mathbb{R}^3)\right) \cap L^{\frac{2p}{p-3}}\left([0,T],L^{2p}(\mathbb{R}^3)\right)$ mapping the data to the unique solution. Show that this map is continuous (in fact Lipschitz).

HINT: Consider the difference of two solutions arising from data which are close in $\dot{H}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3)$.

5. (Global well-posedness in the critical case p = 5.) Prove that there exists $\epsilon_0 > 0$ such that for all smooth data satisfying $||f||_{\dot{H}^1(\mathbb{R}^3)} + ||g||_{L^2(\mathbb{R}^3)} < \epsilon_0$ the problem $\Box \phi = \phi^5$ with data $\phi(0, x) = f(x)$, $\partial_t \phi(0, x) = g(x)$ has a unique global in time smooth solution.

Analysis Review Problems

- 1. Show that the mixed spaces $L_t^q L_r^r$ defined in class are indeed Banach spaces.
- 2. Show that smooth functions of compact support are dense in $L_t^q L_x^r$.
- 3. Show that the dual of $L_t^q L_x^r$ can be identified with $L_t^{q'} L_x^{r'}$ where $\frac{1}{q} + \frac{1}{q'} = 1$ and $\frac{1}{r} + \frac{1}{r'} = 1$.